Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Neural Comput Appl ; : 1-23, 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2318419

ABSTRACT

Nowadays, quick, and accurate diagnosis of COVID-19 is a pressing need. This study presents a multimodal system to meet this need. The presented system employs a machine learning module that learns the required knowledge from the datasets collected from 930 COVID-19 patients hospitalized in Italy during the first wave of COVID-19 (March-June 2020). The dataset consists of twenty-five biomarkers from electronic health record and Chest X-ray (CXR) images. It is found that the system can diagnose low- or high-risk patients with an accuracy, sensitivity, and F1-score of 89.03%, 90.44%, and 89.03%, respectively. The system exhibits 6% higher accuracy than the systems that employ either CXR images or biomarker data. In addition, the system can calculate the mortality risk of high-risk patients using multivariate logistic regression-based nomogram scoring technique. Interested physicians can use the presented system to predict the early mortality risks of COVID-19 patients using the web-link: Covid-severity-grading-AI. In this case, a physician needs to input the following information: CXR image file, Lactate Dehydrogenase (LDH), Oxygen Saturation (O2%), White Blood Cells Count, C-reactive protein, and Age. This way, this study contributes to the management of COVID-19 patients by predicting early mortality risk. Supplementary Information: The online version contains supplementary material available at 10.1007/s00521-023-08606-w.

2.
Sensors (Basel) ; 23(9)2023 May 03.
Article in English | MEDLINE | ID: covidwho-2319632

ABSTRACT

Rapid identification of COVID-19 can assist in making decisions for effective treatment and epidemic prevention. The PCR-based test is expert-dependent, is time-consuming, and has limited sensitivity. By inspecting Chest R-ray (CXR) images, COVID-19, pneumonia, and other lung infections can be detected in real time. The current, state-of-the-art literature suggests that deep learning (DL) is highly advantageous in automatic disease classification utilizing the CXR images. The goal of this study is to develop models by employing DL models for identifying COVID-19 and other lung disorders more efficiently. For this study, a dataset of 18,564 CXR images with seven disease categories was created from multiple publicly available sources. Four DL architectures including the proposed CNN model and pretrained VGG-16, VGG-19, and Inception-v3 models were applied to identify healthy and six lung diseases (fibrosis, lung opacity, viral pneumonia, bacterial pneumonia, COVID-19, and tuberculosis). Accuracy, precision, recall, f1 score, area under the curve (AUC), and testing time were used to evaluate the performance of these four models. The results demonstrated that the proposed CNN model outperformed all other DL models employed for a seven-class classification with an accuracy of 93.15% and average values for precision, recall, f1-score, and AUC of 0.9343, 0.9443, 0.9386, and 0.9939. The CNN model equally performed well when other multiclass classifications including normal and COVID-19 as the common classes were considered, yielding accuracy values of 98%, 97.49%, 97.81%, 96%, and 96.75% for two, three, four, five, and six classes, respectively. The proposed model can also identify COVID-19 with shorter training and testing times compared to other transfer learning models.


Subject(s)
COVID-19 , Pneumonia, Viral , Humans , COVID-19/diagnosis , Pneumonia, Viral/diagnostic imaging , Area Under Curve , Decision Making , Machine Learning
3.
Bioengineering (Basel) ; 10(2)2023 Jan 28.
Article in English | MEDLINE | ID: covidwho-2271670

ABSTRACT

The continuous monitoring of respiratory rate (RR) and oxygen saturation (SpO2) is crucial for patients with cardiac, pulmonary, and surgical conditions. RR and SpO2 are used to assess the effectiveness of lung medications and ventilator support. In recent studies, the use of a photoplethysmogram (PPG) has been recommended for evaluating RR and SpO2. This research presents a novel method of estimating RR and SpO2 using machine learning models that incorporate PPG signal features. A number of established methods are used to extract meaningful features from PPG. A feature selection approach was used to reduce the computational complexity and the possibility of overfitting. There were 19 models trained for both RR and SpO2 separately, from which the most appropriate regression model was selected. The Gaussian process regression model outperformed all the other models for both RR and SpO2 estimation. The mean absolute error (MAE) for RR was 0.89, while the root-mean-squared error (RMSE) was 1.41. For SpO2, the model had an RMSE of 0.98 and an MAE of 0.57. The proposed system is a state-of-the-art approach for estimating RR and SpO2 reliably from PPG. If RR and SpO2 can be consistently and effectively derived from the PPG signal, patients can monitor their RR and SpO2 at a cheaper cost and with less hassle.

4.
IEEE Access ; 9: 41052-41065, 2021.
Article in English | MEDLINE | ID: covidwho-2248265

ABSTRACT

Coronavirus disease 2019 (COVID-19) has rapidly become a global health concern after its first known detection in December 2019. As a result, accurate and reliable advance warning system for the early diagnosis of COVID-19 has now become a priority. The detection of COVID-19 in early stages is not a straightforward task from chest X-ray images according to expert medical doctors because the traces of the infection are visible only when the disease has progressed to a moderate or severe stage. In this study, our first aim is to evaluate the ability of recent state-of-the-art Machine Learning techniques for the early detection of COVID-19 from chest X-ray images. Both compact classifiers and deep learning approaches are considered in this study. Furthermore, we propose a recent compact classifier, Convolutional Support Estimator Network (CSEN) approach for this purpose since it is well-suited for a scarce-data classification task. Finally, this study introduces a new benchmark dataset called Early-QaTa-COV19, which consists of 1065 early-stage COVID-19 pneumonia samples (very limited or no infection signs) labeled by the medical doctors and 12544 samples for control (normal) class. A detailed set of experiments shows that the CSEN achieves the top (over 97%) sensitivity with over 95.5% specificity. Moreover, DenseNet-121 network produces the leading performance among other deep networks with 95% sensitivity and 99.74% specificity.

5.
Eng Appl Artif Intell ; 122: 106130, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2247906

ABSTRACT

The world is slowly recovering from the Coronavirus disease 2019 (COVID-19) pandemic; however, humanity has experienced one of its According to work by Mishra et al. (2020), the study's first phase included a cohort of 5,262 subjects, with 3,325 Fitbit users constituting the majority. However, among this large cohort of 5,262 subjects, most significant trials in modern times only to learn about its lack of preparedness in the face of a highly contagious pathogen. To better prepare the world for any new mutation of the same pathogen or the newer ones, technological development in the healthcare system is a must. Hence, in this work, PCovNet+, a deep learning framework, was proposed for smartwatches and fitness trackers to monitor the user's Resting Heart Rate (RHR) for the infection-induced anomaly. A convolutional neural network (CNN)-based variational autoencoder (VAE) architecture was used as the primary model along with a long short-term memory (LSTM) network to create latent space embeddings for the VAE. Moreover, the framework employed pre-training using normal data from healthy subjects to circumvent the data shortage problem in the personalized models. This framework was validated on a dataset of 68 COVID-19-infected subjects, resulting in anomalous RHR detection with precision, recall, F-beta, and F-1 score of 0.993, 0.534, 0.9849, and 0.6932, respectively, which is a significant improvement compared to the literature. Furthermore, the PCovNet+ framework successfully detected COVID-19 infection for 74% of the subjects (47% presymptomatic and 27% post-symptomatic detection). The results prove the usability of such a system as a secondary diagnostic tool enabling continuous health monitoring and contact tracing.

6.
Bioengineering (Basel) ; 9(10)2022 Oct 16.
Article in English | MEDLINE | ID: covidwho-2071199

ABSTRACT

Respiratory ailments are a very serious health issue and can be life-threatening, especially for patients with COVID. Respiration rate (RR) is a very important vital health indicator for patients. Any abnormality in this metric indicates a deterioration in health. Hence, continuous monitoring of RR can act as an early indicator. Despite that, RR monitoring equipment is generally provided only to intensive care unit (ICU) patients. Recent studies have established the feasibility of using photoplethysmogram (PPG) signals to estimate RR. This paper proposes a deep-learning-based end-to-end solution for estimating RR directly from the PPG signal. The system was evaluated on two popular public datasets: VORTAL and BIDMC. A lightweight model, ConvMixer, outperformed all of the other deep neural networks. The model provided a root mean squared error (RMSE), mean absolute error (MAE), and correlation coefficient (R) of 1.75 breaths per minute (bpm), 1.27 bpm, and 0.92, respectively, for VORTAL, while these metrics were 1.20 bpm, 0.77 bpm, and 0.92, respectively, for BIDMC. The authors also showed how fine-tuning a small subset could increase the performance of the model in the case of an out-of-distribution dataset. In the fine-tuning experiments, the models produced an average R of 0.81. Hence, this lightweight model can be deployed to mobile devices for real-time monitoring of patients.

7.
Diagnostics (Basel) ; 12(9)2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2009978

ABSTRACT

With the onset of the COVID-19 pandemic, the number of critically sick patients in intensive care units (ICUs) has increased worldwide, putting a burden on ICUs. Early prediction of ICU requirement is crucial for efficient resource management and distribution. Early-prediction scoring systems for critically ill patients using mathematical models are available, but are not generalized for COVID-19 and Non-COVID patients. This study aims to develop a generalized and reliable prognostic model for ICU admission for both COVID-19 and non-COVID-19 patients using best feature combination from the patient data at admission. A retrospective cohort study was conducted on a dataset collected from the pulmonology department of Moscow City State Hospital between 20 April 2020 and 5 June 2020. The dataset contains ten clinical features for 231 patients, of whom 100 patients were transferred to ICU and 131 were stable (non-ICU) patients. There were 156 COVID positive patients and 75 non-COVID patients. Different feature selection techniques were investigated, and a stacking machine learning model was proposed and compared with eight different classification algorithms to detect risk of need for ICU admission for both COVID-19 and non-COVID patients combined and COVID patients alone. C-reactive protein (CRP), chest computed tomography (CT), lung tissue affected (%), age, admission to hospital, and fibrinogen parameters at hospital admission were found to be important features for ICU-requirement risk prediction. The best performance was produced by the stacking approach, with weighted precision, sensitivity, F1-score, specificity, and overall accuracy of 84.45%, 84.48%, 83.64%, 84.47%, and 84.48%, respectively, for both types of patients, and 85.34%, 85.35%, 85.11%, 85.34%, and 85.35%, respectively, for COVID-19 patients only. The proposed work can help doctors to improve management through early prediction of the risk of need for ICU admission of patients during the COVID-19 pandemic, as the model can be used for both types of patients.

8.
Comput Biol Med ; 149: 106070, 2022 10.
Article in English | MEDLINE | ID: covidwho-2007626

ABSTRACT

Screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among symptomatic and asymptomatic patients offers unique opportunities for curtailing the transmission of novel coronavirus disease 2019, commonly known as COVID-19. Molecular diagnostic techniques, namely reverse transcription loop-mediated isothermal amplification (RT-LAMP), reverse transcription-polymerase chain reaction (RT-PCR), and immunoassays, have been frequently used to identify COVID-19 infection. Although these techniques are robust and accurate, mass testing of potentially infected individuals has shown difficulty due to the resources, manpower, and costs it entails. Moreover, as these techniques are typically used to test symptomatic patients, healthcare systems have failed to screen asymptomatic patients, whereas the spread of COVID-19 by these asymptomatic individuals has turned into a crucial problem. Besides, respiratory infections or cardiovascular conditions generally demonstrate changes in physiological parameters, namely body temperature, blood pressure, and breathing rate, which signifies the onset of diseases. Such vitals monitoring systems have shown promising results employing artificial intelligence (AI). Therefore, the potential use of wearable devices for monitoring asymptomatic COVID-19 individuals has recently been explored. This work summarizes the efforts that have been made in the domains from laboratory-based testing to asymptomatic patient monitoring via wearable systems.


Subject(s)
COVID-19 , Wearable Electronic Devices , Artificial Intelligence , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , SARS-CoV-2 , Sensitivity and Specificity
9.
Cognit Comput ; 14(5): 1752-1772, 2022.
Article in English | MEDLINE | ID: covidwho-1943282

ABSTRACT

Novel coronavirus disease (COVID-19) is an extremely contagious and quickly spreading coronavirus infestation. Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which outbreak in 2002 and 2011, and the current COVID-19 pandemic are all from the same family of coronavirus. This work aims to classify COVID-19, SARS, and MERS chest X-ray (CXR) images using deep convolutional neural networks (CNNs). To the best of our knowledge, this classification scheme has never been investigated in the literature. A unique database was created, so-called QU-COVID-family, consisting of 423 COVID-19, 144 MERS, and 134 SARS CXR images. Besides, a robust COVID-19 recognition system was proposed to identify lung regions using a CNN segmentation model (U-Net), and then classify the segmented lung images as COVID-19, MERS, or SARS using a pre-trained CNN classifier. Furthermore, the Score-CAM visualization method was utilized to visualize classification output and understand the reasoning behind the decision of deep CNNs. Several deep learning classifiers were trained and tested; four outperforming algorithms were reported: SqueezeNet, ResNet18, InceptionV3, and DenseNet201. Original and preprocessed images were used individually and all together as the input(s) to the networks. Two recognition schemes were considered: plain CXR classification and segmented CXR classification. For plain CXRs, it was observed that InceptionV3 outperforms other networks with a 3-channel scheme and achieves sensitivities of 99.5%, 93.1%, and 97% for classifying COVID-19, MERS, and SARS images, respectively. In contrast, for segmented CXRs, InceptionV3 outperformed using the original CXR dataset and achieved sensitivities of 96.94%, 79.68%, and 90.26% for classifying COVID-19, MERS, and SARS images, respectively. The classification performance degrades with segmented CXRs compared to plain CXRs. However, the results are more reliable as the network learns from the main region of interest, avoiding irrelevant non-lung areas (heart, bones, or text), which was confirmed by the Score-CAM visualization. All networks showed high COVID-19 detection sensitivity (> 96%) with the segmented lung images. This indicates the unique radiographic signature of COVID-19 cases in the eyes of AI, which is often a challenging task for medical doctors.

10.
Comput Biol Med ; 147: 105682, 2022 08.
Article in English | MEDLINE | ID: covidwho-1944683

ABSTRACT

While the advanced diagnostic tools and healthcare management protocols have been struggling to contain the COVID-19 pandemic, the spread of the contagious viral pathogen before the symptom onset acted as the Achilles' heel. Although reverse transcription-polymerase chain reaction (RT-PCR) has been widely used for COVID-19 diagnosis, they are hardly administered before any visible symptom, which provokes rapid transmission. This study proposes PCovNet, a Long Short-term Memory Variational Autoencoder (LSTM-VAE)-based anomaly detection framework, to detect COVID-19 infection in the presymptomatic stage from the Resting Heart Rate (RHR) derived from the wearable devices, i.e., smartwatch or fitness tracker. The framework was trained and evaluated in two configurations on a publicly available wearable device dataset consisting of 25 COVID-positive individuals in the span of four months including their COVID-19 infection phase. The first configuration of the framework detected RHR abnormality with average Precision, Recall, and F-beta scores of 0.946, 0.234, and 0.918, respectively. However, the second configuration detected aberrant RHR in 100% of the subjects (25 out of 25) during the infectious period. Moreover, 80% of the subjects (20 out of 25) were detected during the presymptomatic stage. These findings prove the feasibility of using wearable devices with such a deep learning framework as a secondary diagnosis tool to circumvent the presymptomatic COVID-19 detection problem.


Subject(s)
COVID-19 , Deep Learning , Wearable Electronic Devices , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2
11.
Sustainability ; 14(9):5056, 2022.
Article in English | MDPI | ID: covidwho-1810172

ABSTRACT

Due to the COVID-19 pandemic, there was an urgent need to move to online teaching and develop innovative teaching techniques to ensure that student learning outcomes (SOs) were fulfilled. This paper tries to answer the important question of whether an established teaching strategy through a multi-course project-based learning (MPL) approach, along with online assessment techniques, helps in the effective achievement of SOs in a senior-level electrical engineering (EE) course. The authors have developed a course project for attaining the objectives of a senior and a capstone course, where students are registered at the same time. In addition, the course conducts assessments online. The paper reports the effect of the two approaches on the attainment of the SOs of the two courses, along with testing the programming and problem-solving abilities of the students. It is known that the MPL approach enhances the critical thinking capacity of students, which is also a major outcome of Sustainable Development Education (ESD). It was ensured that the project that was used to test the fulfillment of a series of SOs were concentrated on soft engineering and project management skills. The difficulty of adopting the MPL method for the senior-level courses is in the scheduling of the course materials to help the student advance to the final project while also aligning the project towards fulfilling the learning outcomes of the individual course. The study also provides the students with feedback on online assessment techniques incorporated within the MPL. Besides this, the effect of the innovative teaching approaches was compared with the same senior course taught using conventional methods in an earlier semester. Based on the feedback from teachers and students from a previously conducted case study, it was concluded that the MPL approach had supported the student learning. The results of the statistical analysis (Chi-square, two-tailed T statistics and hypothesis testing using a z-test) show that an MPL approach and online assessment improved the attainment of the SOs despite the constraints posed by the pandemic.

12.
Diagnostics (Basel) ; 12(4)2022 Apr 07.
Article in English | MEDLINE | ID: covidwho-1785560

ABSTRACT

Problem-Since the outbreak of the COVID-19 pandemic, mass testing has become essential to reduce the spread of the virus. Several recent studies suggest that a significant number of COVID-19 patients display no physical symptoms whatsoever. Therefore, it is unlikely that these patients will undergo COVID-19 testing, which increases their chances of unintentionally spreading the virus. Currently, the primary diagnostic tool to detect COVID-19 is a reverse-transcription polymerase chain reaction (RT-PCR) test from the respiratory specimens of the suspected patient, which is invasive and a resource-dependent technique. It is evident from recent researches that asymptomatic COVID-19 patients cough and breathe in a different way than healthy people. Aim-This paper aims to use a novel machine learning approach to detect COVID-19 (symptomatic and asymptomatic) patients from the convenience of their homes so that they do not overburden the healthcare system and also do not spread the virus unknowingly by continuously monitoring themselves. Method-A Cambridge University research group shared such a dataset of cough and breath sound samples from 582 healthy and 141 COVID-19 patients. Among the COVID-19 patients, 87 were asymptomatic while 54 were symptomatic (had a dry or wet cough). In addition to the available dataset, the proposed work deployed a real-time deep learning-based backend server with a web application to crowdsource cough and breath datasets and also screen for COVID-19 infection from the comfort of the user's home. The collected dataset includes data from 245 healthy individuals and 78 asymptomatic and 18 symptomatic COVID-19 patients. Users can simply use the application from any web browser without installation and enter their symptoms, record audio clips of their cough and breath sounds, and upload the data anonymously. Two different pipelines for screening were developed based on the symptoms reported by the users: asymptomatic and symptomatic. An innovative and novel stacking CNN model was developed using three base learners from of eight state-of-the-art deep learning CNN algorithms. The stacking CNN model is based on a logistic regression classifier meta-learner that uses the spectrograms generated from the breath and cough sounds of symptomatic and asymptomatic patients as input using the combined (Cambridge and collected) dataset. Results-The stacking model outperformed the other eight CNN networks with the best classification performance for binary classification using cough sound spectrogram images. The accuracy, sensitivity, and specificity for symptomatic and asymptomatic patients were 96.5%, 96.42%, and 95.47% and 98.85%, 97.01%, and 99.6%, respectively. For breath sound spectrogram images, the metrics for binary classification of symptomatic and asymptomatic patients were 91.03%, 88.9%, and 91.5% and 80.01%, 72.04%, and 82.67%, respectively. Conclusion-The web-application QUCoughScope records coughing and breathing sounds, converts them to a spectrogram, and applies the best-performing machine learning model to classify the COVID-19 patients and healthy subjects. The result is then reported back to the test user in the application interface. Therefore, this novel system can be used by patients in their premises as a pre-screening method to aid COVID-19 diagnosis by prioritizing the patients for RT-PCR testing and thereby reducing the risk of spreading of the disease.

13.
Health Inf Sci Syst ; 10(1): 1, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1648736

ABSTRACT

The reliable and rapid identification of the COVID-19 has become crucial to prevent the rapid spread of the disease, ease lockdown restrictions and reduce pressure on public health infrastructures. Recently, several methods and techniques have been proposed to detect the SARS-CoV-2 virus using different images and data. However, this is the first study that will explore the possibility of using deep convolutional neural network (CNN) models to detect COVID-19 from electrocardiogram (ECG) trace images. In this work, COVID-19 and other cardiovascular diseases (CVDs) were detected using deep-learning techniques. A public dataset of ECG images consisting of 1937 images from five distinct categories, such as normal, COVID-19, myocardial infarction (MI), abnormal heartbeat (AHB), and recovered myocardial infarction (RMI) were used in this study. Six different deep CNN models (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, and MobileNetv2) were used to investigate three different classification schemes: (i) two-class classification (normal vs COVID-19); (ii) three-class classification (normal, COVID-19, and other CVDs), and finally, (iii) five-class classification (normal, COVID-19, MI, AHB, and RMI). For two-class and three-class classification, Densenet201 outperforms other networks with an accuracy of 99.1%, and 97.36%, respectively; while for the five-class classification, InceptionV3 outperforms others with an accuracy of 97.83%. ScoreCAM visualization confirms that the networks are learning from the relevant area of the trace images. Since the proposed method uses ECG trace images which can be captured by smartphones and are readily available facilities in low-resources countries, this study will help in faster computer-aided diagnosis of COVID-19 and other cardiac abnormalities.

14.
Comput Biol Med ; 139: 105002, 2021 12.
Article in English | MEDLINE | ID: covidwho-1487672

ABSTRACT

The immense spread of coronavirus disease 2019 (COVID-19) has left healthcare systems incapable to diagnose and test patients at the required rate. Given the effects of COVID-19 on pulmonary tissues, chest radiographic imaging has become a necessity for screening and monitoring the disease. Numerous studies have proposed Deep Learning approaches for the automatic diagnosis of COVID-19. Although these methods achieved outstanding performance in detection, they have used limited chest X-ray (CXR) repositories for evaluation, usually with a few hundred COVID-19 CXR images only. Thus, such data scarcity prevents reliable evaluation of Deep Learning models with the potential of overfitting. In addition, most studies showed no or limited capability in infection localization and severity grading of COVID-19 pneumonia. In this study, we address this urgent need by proposing a systematic and unified approach for lung segmentation and COVID-19 localization with infection quantification from CXR images. To accomplish this, we have constructed the largest benchmark dataset with 33,920 CXR images, including 11,956 COVID-19 samples, where the annotation of ground-truth lung segmentation masks is performed on CXRs by an elegant human-machine collaborative approach. An extensive set of experiments was performed using the state-of-the-art segmentation networks, U-Net, U-Net++, and Feature Pyramid Networks (FPN). The developed network, after an iterative process, reached a superior performance for lung region segmentation with Intersection over Union (IoU) of 96.11% and Dice Similarity Coefficient (DSC) of 97.99%. Furthermore, COVID-19 infections of various shapes and types were reliably localized with 83.05% IoU and 88.21% DSC. Finally, the proposed approach has achieved an outstanding COVID-19 detection performance with both sensitivity and specificity values above 99%.


Subject(s)
COVID-19 , Humans , Lung/diagnostic imaging , SARS-CoV-2 , Thorax , X-Rays
15.
Diagnostics (Basel) ; 11(9)2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-1390558

ABSTRACT

Healthcare researchers have been working on mortality prediction for COVID-19 patients with differing levels of severity. A rapid and reliable clinical evaluation of disease intensity will assist in the allocation and prioritization of mortality mitigation resources. The novelty of the work proposed in this paper is an early prediction model of high mortality risk for both COVID-19 and non-COVID-19 patients, which provides state-of-the-art performance, in an external validation cohort from a different population. Retrospective research was performed on two separate hospital datasets from two different countries for model development and validation. In the first dataset, COVID-19 and non-COVID-19 patients were admitted to the emergency department in Boston (24 March 2020 to 30 April 2020), and in the second dataset, 375 COVID-19 patients were admitted to Tongji Hospital in China (10 January 2020 to 18 February 2020). The key parameters to predict the risk of mortality for COVID-19 and non-COVID-19 patients were identified and a nomogram-based scoring technique was developed using the top-ranked five parameters. Age, Lymphocyte count, D-dimer, CRP, and Creatinine (ALDCC), information acquired at hospital admission, were identified by the logistic regression model as the primary predictors of hospital death. For the development cohort, and internal and external validation cohorts, the area under the curves (AUCs) were 0.987, 0.999, and 0.992, respectively. All the patients are categorized into three groups using ALDCC score and death probability: Low (probability < 5%), Moderate (5% < probability < 50%), and High (probability > 50%) risk groups. The prognostic model, nomogram, and ALDCC score will be able to assist in the early identification of both COVID-19 and non-COVID-19 patients with high mortality risk, helping physicians to improve patient management.

16.
IEEE Access ; 9: 120422-120441, 2021.
Article in English | MEDLINE | ID: covidwho-1373729

ABSTRACT

The coronavirus disease 2019 (COVID-19) after outbreaking in Wuhan increasingly spread throughout the world. Fast, reliable, and easily accessible clinical assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. The objective of the study was to develop and validate an early scoring tool to stratify the risk of death using readily available complete blood count (CBC) biomarkers. A retrospective study was conducted on twenty-three CBC blood biomarkers for predicting disease mortality for 375 COVID-19 patients admitted to Tongji Hospital, China from January 10 to February 18, 2020. Machine learning based key biomarkers among the CBC parameters as the mortality predictors were identified. A multivariate logistic regression-based nomogram and a scoring system was developed to categorize the patients in three risk groups (low, moderate, and high) for predicting the mortality risk among COVID-19 patients. Lymphocyte count, neutrophils count, age, white blood cell count, monocytes (%), platelet count, red blood cell distribution width parameters collected at hospital admission were selected as important biomarkers for death prediction using random forest feature selection technique. A CBC score was devised for calculating the death probability of the patients and was used to categorize the patients into three sub-risk groups: low (<=5%), moderate (>5% and <=50%), and high (>50%), respectively. The area under the curve (AUC) of the model for the development and internal validation cohort were 0.961 and 0.88, respectively. The proposed model was further validated with an external cohort of 103 patients of Dhaka Medical College, Bangladesh, which exhibits in an AUC of 0.963. The proposed CBC parameter-based prognostic model and the associated web-application, can help the medical doctors to improve the management by early prediction of mortality risk of the COVID-19 patients in the low-resource countries.

17.
Diagnostics (Basel) ; 11(5)2021 May 17.
Article in English | MEDLINE | ID: covidwho-1234678

ABSTRACT

Detecting COVID-19 at an early stage is essential to reduce the mortality risk of the patients. In this study, a cascaded system is proposed to segment the lung, detect, localize, and quantify COVID-19 infections from computed tomography images. An extensive set of experiments were performed using Encoder-Decoder Convolutional Neural Networks (ED-CNNs), UNet, and Feature Pyramid Network (FPN), with different backbone (encoder) structures using the variants of DenseNet and ResNet. The conducted experiments for lung region segmentation showed a Dice Similarity Coefficient (DSC) of 97.19% and Intersection over Union (IoU) of 95.10% using U-Net model with the DenseNet 161 encoder. Furthermore, the proposed system achieved an elegant performance for COVID-19 infection segmentation with a DSC of 94.13% and IoU of 91.85% using the FPN with DenseNet201 encoder. The proposed system can reliably localize infections of various shapes and sizes, especially small infection regions, which are rarely considered in recent studies. Moreover, the proposed system achieved high COVID-19 detection performance with 99.64% sensitivity and 98.72% specificity. Finally, the system was able to discriminate between different severity levels of COVID-19 infection over a dataset of 1110 subjects with sensitivity values of 98.3%, 71.2%, 77.8%, and 100% for mild, moderate, severe, and critical, respectively.

18.
Cognit Comput ; : 1-16, 2021 Apr 21.
Article in English | MEDLINE | ID: covidwho-1198507

ABSTRACT

COVID-19 pandemic has created an extreme pressure on the global healthcare services. Fast, reliable, and early clinical assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. In order to study the important blood biomarkers for predicting disease mortality, a retrospective study was conducted on a dataset made public by Yan et al. in [1] of 375 COVID-19 positive patients admitted to Tongji Hospital (China) from January 10 to February 18, 2020. Demographic and clinical characteristics and patient outcomes were investigated using machine learning tools to identify key biomarkers to predict the mortality of individual patient. A nomogram was developed for predicting the mortality risk among COVID-19 patients. Lactate dehydrogenase, neutrophils (%), lymphocyte (%), high-sensitivity C-reactive protein, and age (LNLCA)-acquired at hospital admission-were identified as key predictors of death by multi-tree XGBoost model. The area under curve (AUC) of the nomogram for the derivation and validation cohort were 0.961 and 0.991, respectively. An integrated score (LNLCA) was calculated with the corresponding death probability. COVID-19 patients were divided into three subgroups: low-, moderate-, and high-risk groups using LNLCA cutoff values of 10.4 and 12.65 with the death probability less than 5%, 5-50%, and above 50%, respectively. The prognostic model, nomogram, and LNLCA score can help in early detection of high mortality risk of COVID-19 patients, which will help doctors to improve the management of patient stratification.

19.
IEEE Trans Neural Netw Learn Syst ; 32(5): 1810-1820, 2021 05.
Article in English | MEDLINE | ID: covidwho-1191869

ABSTRACT

Coronavirus disease (COVID-19) has been the main agenda of the whole world ever since it came into sight. X-ray imaging is a common and easily accessible tool that has great potential for COVID-19 diagnosis and prognosis. Deep learning techniques can generally provide state-of-the-art performance in many classification tasks when trained properly over large data sets. However, data scarcity can be a crucial obstacle when using them for COVID-19 detection. Alternative approaches such as representation-based classification [collaborative or sparse representation (SR)] might provide satisfactory performance with limited size data sets, but they generally fall short in performance or speed compared to the neural network (NN)-based methods. To address this deficiency, convolution support estimation network (CSEN) has recently been proposed as a bridge between representation-based and NN approaches by providing a noniterative real-time mapping from query sample to ideally SR coefficient support, which is critical information for class decision in representation-based techniques. The main premises of this study can be summarized as follows: 1) A benchmark X-ray data set, namely QaTa-Cov19, containing over 6200 X-ray images is created. The data set covering 462 X-ray images from COVID-19 patients along with three other classes; bacterial pneumonia, viral pneumonia, and normal. 2) The proposed CSEN-based classification scheme equipped with feature extraction from state-of-the-art deep NN solution for X-ray images, CheXNet, achieves over 98% sensitivity and over 95% specificity for COVID-19 recognition directly from raw X-ray images when the average performance of 5-fold cross validation over QaTa-Cov19 data set is calculated. 3) Having such an elegant COVID-19 assistive diagnosis performance, this study further provides evidence that COVID-19 induces a unique pattern in X-rays that can be discriminated with high accuracy.


Subject(s)
COVID-19/diagnostic imaging , Deep Learning , Neural Networks, Computer , X-Rays , COVID-19/classification , Deep Learning/classification , Diagnosis, Differential , Humans , Pneumonia, Bacterial/classification , Pneumonia, Bacterial/diagnostic imaging , Pneumonia, Viral/classification , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed/classification
20.
Emergent Mater ; 4(1): 313-327, 2021.
Article in English | MEDLINE | ID: covidwho-1169072

ABSTRACT

The onset of the corona virus disease 2019 (COVID-19) pandemic caused shortages in mechanical ventilators (MVs) essential for the intensive care unit (ICU) in the hospitals. The increasing crisis prompted the investigation of ventilators which is low cost and offers lower health complications. Many researchers are revisiting the use of negative pressure ventilators (NPVs), due to the cost and complications of positive pressure ventilators (PPVs). This paper summarizes the evolution of the MVs, highlighting the limitations of popular positive and negative pressure ventilators and how NPV can be a cost-effective and lower health complication solution. This paper also provides a detailed investigation of the structure and material for the patient enclosure that can be used for a cost-effective NPV system using ANSYS simulations. The simulation results can confirm the selection and also help in developing a low cost while based on readily available materials. This can help the manufacturer to develop low-cost NPV and reduce the pressure on the healthcare system for any pandemic situation similar to COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL